Impact Rate and Geometry Effects in Pipe Grade Materials

Additional Information - Posters # 1998 Gothenburg

A model for dynamic and impact fracture has been recently proposed whereby the fracture event is controlled by adiabatic heating and subsequent melting of the cohesive crack tip craze. The crack initiation resistance is shown to be an inherent function of specimen geometry and impact speed. This theoretical framework allows impact data to be translated from geometry and test speed to another. Dugdale model solutions are also proposed for the Charpy impact test.

Please note that the whole article content is available on PPCA website onlySource : 1998 Gothenburg


Related papers

EXTRUSION OF THICK WALL PIPES USING A NEW BIMODAL PE 4710/PE 100 RESIN

Author(s) : Vivek Rohatg, Gregor Hiesgen, Mark J. Lamborn, Ashish M. Sukhadia, Douglas E. Simpson, David W. Borrego, Pamela L. Maeger 2018 Las-Vegas

Maintaining dimensions within specifications is problematic for the extrusion of large diameter thick-wall polyethylene (PE) pipe (> 75 mm wall) due to sag caused by insufficient resin melt strength. However, sag can be controlled through careful resin selection and optimization of the pipe cooling process. This...

Production of Potable Water Pipes for Chile Using the Inline Extrusion Process

Author(s) : Douglas D. Keller 2018 Las-Vegas

This paper describes the successful collaboration of a regulator, pipe producer and PE material supplier to demonstrate the conformance of pipes produced with inline extrusion compound to the requirement of the Chilean water pipe normative NCh398/1.Of2004 and also to the performance requirements of ISO 4427:2007 parts...

Application of a Rapid LC-MS Technique to the Development of an Enhanced Chlorine Resistant Antioxidant Package for Polyethylene: Comparison to Oit and Resin Property Retention

Author(s) : Steven Horwatt, Randall Duderstadt, Douglas Keller, Sameer Mehta 2014 Chicago

The development of an antioxidant package for potential use in chlorine resistance of polyethylene pipe is a timeintensive exercise. Previous studies have shown that simple bench top experiments in the solution phase, coupled with LC-MS as a rapid tool for evaluating the analysis of antioxidant reaction products after...

S4 to full-scale test correlation: new insights from an ‘open source’ RCP model

Author(s) : Patrick Leevers, Christos Argyrakis 2010 Vancouver

There is renewed interest in the correlation between critical pressures from lab-scale (S4) and full-scale RCP tests. The standard, supposedly material-independent correlation factor does provide a lower bound for data from many PE grades, but for some grades it is overconservative and for PA12 its applicability has...

Towards a methodology for designing RCP-resistant polyethylenes using batch scale test methods

Author(s) : P.Leevers 2010 Vancouver

This paper outlines a PE100 design methodology which gives central importance to the separate modelling and measurement of plane-strain and plane-stress dynamic fracture resistance. The former is difficult to measure but can be estimated from weight-average molecular weight; the latter is related to high-rate...

Rapid Crack Propagation Failures in HDPE Pipes; Structure-Property Investigations

Author(s) : Krishnaswamy, Leevers, Lamborn, Sukhadia, Register, Maeger 2006 Washington DC

The influence of molecular architecture on the rapid crack propagation (RCP) resistance of a wide variety of high-density polyethylene (HDPE) pipes was investigated. It was concluded that high molecular weight, high crystallinity and a relatively narrow molecular weight distribution are important architectural...

Rapid Crack Propagation in Loosely Fitted PE Liner Pipe

Author(s) : Leevers, Henderson, Pereira 2006 Washington DC

Laboratory-scale S4 tests have been used to determine whether it would be possible, at any realistic working pressure, for a loosely-fitted PE liner within a rigid host pipe to fail by Rapid Crack Propagation (RCP). The standard ISO 13477 S4 method was modified by replacement of the containment ring cage by a rigid,...

S4 Critical Pressure and Critical Temperature

Author(s) : Maeger, Vanspeybroeck, Lamborn, Mamoun, Leevers, Oliphant 2006 Washington DC

As polyethylene pressure pipes enter the global marketplace under an ever-wider range of operating conditions, there is increasing emphasis on their rapid crack propagation performance. It is important that both producers and end-users are able to rely on the robustness of the rapid crack propagation test results and...

S4 CRITICAL TEMPERATURE TESTS: PROCEDURE AND INTERPRETATION

Author(s) : Patrick Leevers 2004 Milan

International Standard ISO 13477 defines the ‘S4’ RCP test itself, and specifies two procedures which use it. The first procedure, already well embedded in referring standards, evaluates a critical pressure at constant temperature (usually 0°C) below which RCP arrests. The second procedure evaluates, at constant...

Fully Predictive Model of RCP in Plastics Pipes

Author(s) : Ivankovic, Tropsa, Jasak, Leevers 2001 Munich

This work presents a 3D coupled solid-fluid model for predicting fast failures in pressurised plastic pipes. It is developed within a unified computational procedure where both solid pipe and pressurising media are discretised using the Finite Volume method. The coupling is achieved across the pipe-fluid interface...

Members of the Association

BOREALISBOROUGEINEOS O&PIRPCKorea Petrochemical IND. Co., LTDLyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
TOP