Our site uses cookies necessary for its proper functioning. To improve your experience, other cookies may be used: you can choose to disable them. This can be changed at any time via the Cookies link at the bottom of the page.


Relationship between Toughness and Structural Parameter of PE-Copolymers [PE]

 

Plastic Pipes Conference Association # 1998 Gothenburg

Nezbedova, Salajka, Kucera

Structural and morphological parameters together with processing conditions determine the type of fracture behaviour of polyethylenes. Long time brittle failure which occurs under low stresses and at room temperature limits the lifetime of polyethylens used as pipes for water and gas distribution. In order to optimise the lifetime of such pipes, it is necessary to apply methods for comprehensive understanding of their structure and fracture properties.

The accelerated PENT and NPT tests were used to determine fracture parameters PE resins. Structural changes during processing conditions were characterised by SIS/DSC method.

The correlation between fracture and structural parameters has been found.

Please note that the whole article content is available on PPCA website only :

Related papers

2021 Amsterdam : MULTILAYER POLYMER PIPES – THE INFLUENCE OF RESIDUAL STRESS ON FATIGUE LIFETIME

Author(s) : Lukas Travnicek, Pavel Hutar, Jan Poduska, Andreas Frank, Florian Arbeiter, Jaroslav Kucera, Jiri Sadilek, Gerald Pinter, Lubos Nahlik

The application of recycled material in pressure piping systems has been considered lately – it was suggested, that the recycled polyethylene could be used as a part of a multilayer pipe together with virgin material. This type of pressure pipes is not availableon the market yet, so their properties can be only...

2018 Las-Vegas : Multilayer polymer pipes - Possible utilization of recycled material

Author(s) : Pavel Hutar, Jan Poduska, Pavol Dlhy, Andreas Frank, Jaroslav Kucera, Jiri Sadilek, Gerald Pinter, Lubos Nahlik

This paper investigates possible use of recycled material as a part of a multilayer polyethylene pressure pipe system. Crack propagation in different configurations is simulated. Lifetimes of pipes containing recycled material are calculated. Results are compared with lifetimes of pipes made of virgin...

2016 Berlin : Residual stress distribution in the extruded polyolefin pipes

Author(s) : Pavel Hutař, Jan Poduška, Jaroslav Kučera, Eva Nezbedová, Andreas Frank, Jiří Sadílek, Gerald Pinter

Residual stresses can significantly influence the lifetime of polymer pipes. Therefore, realistic estimation of residual hoop stress can contribute to accurate lifetime estimations. The previously used “accurate method” is quite time consuming and needs a lot of specimens to be prepared and treated. A simplified...

2012 Barcelona : Comparison of accelerated tests for PE grades lifetime assessment

Author(s) : Andreas Frank, Gerald Pinter, Mridula Kapur, E. Nezbedová

Results from cracked round bar tests (CRB) and pennsylvania notch tests (PENT) for several polyethylene (PE) pipe grades are compared. The CRB tests were conducted at 23 °C and 80 °C, the PENT tests only at 80 °C. A material ranking based on the CRB tests was in good accordance to PENT failure times, although a slight...

2012 Barcelona : Effect of the residual stresses on the slow crack growth

Author(s) : Pavel Hutař, Martin Ševčík, Jaroslav Kučera, Michal Zouhar, Robin Luky, Luboš Náhlík

Using linear elastic fracture mechanics a new methodology for a lifetime assessment of internally pressurized polymer pipes was developed. The concept is based on the numerical calculation of stress intensity factors for pipes under different loading conditions in combination with experimentally determined creep crack...

2010 Vancouver : PENT test versus time to rupture curve for HDPE

Author(s) : E.Nezbedova

The service life for HDPE (PE 80, PE 100) materials used in plastic pipes application covers a time span of up 50 years. The new type of PE 100 (PE 100 RC) should achieve the life time over 100 years. Conventional hydrostatic pressure test to qualify a new resin must last 104 hours (ISO 1167). In the last twenty years...

2006 Washington DC : Analysis of the Fracture Behaviour of Multi-Layer Pipes

Author(s) : Nezbedova, Vlach, Knesl

A multilayer pipe consisting of two different layers, namely of PE and PPH, was analysed. The relevant numerical model based on the Finite Element Method (FEM) was used to calculate the stress and strain distribution and to estimate the fracture characteristics. As variables the thickness of the material layers and...

2006 Washington DC : Effect of Processing on the Lifetime of Pipe HDPE Grade

Author(s) : Sindelar, Nezbedova, Buran

The influence of processing conditions on molecular structure and microstructure of highdensity polyethylene pipe material has been studied. By modifying the segment arrangement and package of additives, conditions during pelletising in the extruder have been changed. Structural analyses obtained by gel permeation...

2006 Washington DC : Full Notch Creep Test - ISO Round Robin Test

Author(s) : Niebergall, Mertlova, Nezbedova

Full Notch Creep Test (FNCT) is widely used to characterize the slow crack growth behavior of particularly pipe and blow moulding PE materials, especially in Europe. However, the validity of the FNCT data is not satisfactory, as the results show large variability so far. Among other SCG tests, which exist and are used...

2004 Milan : Effect of structural parameters on RCP in polyethylene

Author(s) : Eva Nezbedová, Pavel Šindelář and Petr Bohatý

Changing the catalyst composition, it allowed us to alter placement of comonomer from lower to higher polymer molecular weight fractions together with a certain reduction of molecular weight distribution (MWD). Using this catalyst several polymer samples differing in level of branching, in comonomer unit placement and...

2001 Munich : Structural and Fracture Methods as Means of Predicting the Lifetime of HDPE Pipes

Author(s) : Nezbedova, Zahradnickova, Salajka

High-density polyethylene (HDPE) is being used more and more in critical long-term application, such as in pipes for the distribution of water and gas. For this reason it is important to have a strong understanding of those parameters which control the fracture behaviour of HDPE. The main parameters are : i. Chain...

Fracture Mechanics - Analysis of Multiplayer

Author(s) : Nezbedova, Knesl, Sestakova, Vlach

Members of the Association

BOREALISBOROUGEFormosa Plastics CorporationHanwha TotalEnergiesINEOS O&PIRPCKorea Petrochemical IND. Co., LTD (KPIC)LyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
TOP