Ultrasonic phased array inspection of polyethylene damaged pipes with calibrated faults

 

Papers # 2016 Berlin

A test campaign has been carried out by ENGIE Lab-CRIGEN in order to evaluate the acuity of the Phased Array Ultrasonic Technique (PAUT) for detecting and sizing calibrated defects implanted at the inner surface of a PE pipe.These calibrated defectshad four different geometries, called “V-shaped”, “half-V shaped “, “semi-elliptical”and “rectangular”, respectively. They were machined at ten increasing depths on the internal wall of four half-shells from a 110 mm PE100 pipe. The heights of the defects, as evaluated by PAUT, were compared to those measured on replicas using the diagnostic impressioncasting kit developped by CRIGEN. The 40 calibrated defects implanted in the pipe halfshells have been detected by the PAUT examination, including those with the smallest heights corresponding to 2% of the pipe thickness, which brings the POD to 100%.

The last ten year literature shows that the phased array ultrasonic technique (PAUT) is one of the most promising technique for detecting and – under certain conditions – for sizing the faults in both the electrofused joints and the butt fused joints.

More recently some attempts have been done to evaluate the acuity of such a technique for detecting the faults in plain pipes. In this area, ENGIE Lab-CRIGEN presented some preliminary results during the Plastic Pipes XVI. These results showed the efficiency of the PAUT for detecting both a localized or a widespread damage in pipesartificially notched or pressurized under hydrostatic pressure test conditions. Given these encouraging trends, it was decided to launch a systematic program in order to validate the results in other test configurations with the final objective of an accurate sizing of the faults. For that purpose four different faultgeometries have been chosen and machined at theinner surface of a 110 mm PE pipe. The faults were a “V-notch”, a “half V-notch”, a rectangular notch and a semi-elliptical notch. This latter fault was chosen in order to simulate an increasing longitudinal crack in the pipe wall thickness during slow crack growth. Each fault was implemented by indentation with specific shaped tools at ten different depths in the pipe. The fault profiles were controlled by means of a diagnosticimpression-casting technique designed by CRIGEN. PAUT evaluation was made from the outer pipe surface. The profiles obtained by both the imprint technique and the PAUT evaluation are then compared on a quantitative level in terms of both probability of detection (POD) and dimensions. 

Related keywords : Polyethylene; PE, Non-destructive testing, Phased Array Ultrasonic Technique (PAUT), Calibrated defect; Impression-casting.
Please note that the whole article content is available on PPCA website onlySource : 2016 Berlin


Related papers

Acceptance criteria for volume defects in welded assemblies, detected and sized using the phased array ultrasonic technique

Author(s) : Dominique GUEUGNAUT, Manuel TESSIER, Romuald BOUAFFRE 2018 Las-Vegas

Given the virtual absence of available up-to-date results regarding the acceptance criteria for defects at electro-welding interfaces, a study has been launched by GRTgaz RICE with the two-fold aim of confirming the accuracy of the PAUT technique for the detection and sizing of calibrated pit-shaped defects implanted...

Aging mechanism of polyethylene pipe material in chlorine dioxide and hypochlorite solution

Author(s) : Márton Bredács, Andreas Frank, Amaia Bastero, Alex Stolarz, Gerald Pinter 2018 Las-Vegas

Accelerated aging experiments by the immersion of a commercial polyethylene (PE) pipe grade in 10 ppm of chlorine dioxide (ClO2) and in 100 ppm of hypochlorite (HOCl) solution at 60 °C were performed. An additional immersion test was conducted in 1 ppm of ClO2 at 40 °C. The exposure parameters were continuously...

Assessing the remaining service lifetime of PE pipes: an australian case study

Author(s) : Nolene Byrne, Rasike De Silva, Keith Lenghaus, Tim Hilditch 2018 Las-Vegas

Plastic pipes have been utilized in the Australian gas distribution network since the early 1970s. The most common plastic type found in Australia is polyethylene (PE), although nylon is extensively used in New South Wales. Early installation of PE pipe was completed using the first generation high density type PE50...

Characterization of post-use polyethylene and polypropylene recyclate blends for pipe applications

Author(s) : Markus Gall, Reinhold W. Lang, Joerg Fischer, Ansgar Niehoff, Steven Schmidt 2018 Las-Vegas

Despite recent efforts in promoting the utilization of recycled polymeric materials for more diverse and more advanced applications, there are still significant knowledge gaps with regards to the applicability of certain recyclate types for specific “re-use” purposes. When it comes to pipe applications, for...

Development of cyclic pressure fatigue (CPF) test method

Author(s) : Ernest Lever 2018 Las-Vegas

Six different polyethylene materials were tested using Cyclic Pressure Fatigue (CPF) as the accelerating process to correlate the results to conventional long-term hydrostatic test results that were previously developed as part of the material qualification process. The designation of the materials was unknown to the...

Development of polyethylene ball valve to pursue robustness

Author(s) : Ryosuke Nagahisa, Shinichi Katoh 2018 Las-Vegas

We investigated the possibility of using a greaseless polyethylene (PE) ball valve by applying a coating on it to improve the valve’s robustness. In order to verify the valve’s operability, we performed initial-operating-torque, abrasion, and dust tests on both grease-applied and coatingapplied ball valves. These...

Effect of carbon black distribution on polyethylene pipes

Author(s) : Suleyman Deveci, Nisha Preschilla, Birkan Eryigit 2018 Las-Vegas

Pipes with inhomogeneous CB distribution showed 80% less elongation than pipes with homogenously distributed CB. Polymer domains with less or no CB (windows) showed delamination from the polymer matrix as the material elongated, finally leading to fracture much earlier than expected. In this study, we investigated the...

Extrusion of thick wall pipes using a new bimodal PE 4710/PE 100 resin

Author(s) : Vivek Rohatg, Gregor Hiesgen, Mark J. Lamborn, Ashish M. Sukhadia, Douglas E. Simpson, David W. Borrego, Pamela L. Maeger 2018 Las-Vegas

Maintaining dimensions within specifications is problematic for the extrusion of large diameter thick-wall polyethylene (PE) pipe (> 75 mm wall) due to sag caused by insufficient resin melt strength. However, sag can be controlled through careful resin selection and optimization of the pipe cooling process. This...

Increasing HDPE butt fusion productivity by optimizing the cool time based on thermal mass characteristics without compromising joint strength

Author(s) : Amanda Hawkins, Jason Lawrence, Xiangli Meng 2018 Las-Vegas

High Density Polyethylene pipes are used in various applications due to the material’s superior chemical resistance, pressure capability, and ductility. For the material to perform at the optimal design criteria, the connections and fabrications must be fused using repeatable procedures that specify proper fusion...

Innovative millimeter waves technology for measuring diameter, ovality, wall thickness, and sagging of large plastic pipes

Author(s) : Christian Schalich 2018 Las-Vegas

This paper introduces a new technology based on millimeter waves. It provides a noncontact, non-destructive, online measurement of inner and outer diameter, ovality, wall thicknesses, and sagging (sagging of the melt during solidification at a too high viscosity) of large plastic pipes during the extrusion...

Laboratory device for checking the thermal energy delivered by the electrofusion fittings

Author(s) : Dominique GUEUGNAUT, Adil BOUJLAL, Aymeric LOPITAUX, Bertrand SEVRE 2018 Las-Vegas

A special concept has been developed by GRTgaz Research and Innovation Center for Energy (RICE) for temperature mapping at the interface of an electrowelded assembly.The technical solution consists of a tubular piece in place of the real PE pipe, made of a non-weldable polymer with thermal parameters close to those of...

Modern PE pipe enables the transport of hydrogen

Author(s) : R.J.M. Hermkens, H. Colmer, H.A. Ophoff 2018 Las-Vegas

To investigate the suitability of PE pipes for the transport of hydrogen on a specific industrial site, three topics were investigated. These topics are: the chemical resistance of PE to hydrogen, the permeation rate of hydrogen through PE and the electrofusion of PE pipes exposed to hydrogen. It can be concluded that...

New discoveries in stabilizing drinking water pipes in contact with chlorine dioxide

Author(s) : J.D. Kim, S. Kim , T. Schmutz, C. Malchaire, D. Scholz, K. Keck 2018 Las-Vegas

Since a few years, pipe producers are facing the challenge to protect their plastic pipe from degradation due to chlorine dioxide. Unfortunately, most existing stabilization solutions are not effective enough to insure the desired lifetime of the material. This study shows how the latest development allow to top-up...

Performance evaluation of counter-rotating continuous mixer and co-rotating twin screw extruder for high density polyethylene

Author(s) : Sayaka Yamada, Kazuhide Sekiyama, Shiori Watanabe, Kazuo Yamaguchi, Hideo Funahashi 2018 Las-Vegas

Performance evaluation method of plastic mixers for high density polyethylene by using flow simulation is presented in this study. First, Mixing experiments were performed to find the mixing performance of mixers. Then, flow simulations using our original software in the mixers were carried out to know the important...

Polyethylene pipeline performance against earthquake

Author(s) : Hideki Omuro, Tomokazu Himono 2018 Las-Vegas

In Japan, polyethylene (PE) pipe have been used for a long time, but its usage is limited for water service (low density PE / PE 50) and gas service (medium density PE / PE 80). However, after Hyogoken Nanbu Earthquake in 1995, it started to sell PE pipes for water distribution applications, because no damage on PE...

Preparation and studying of thermoplastic cross-linked polyethylene

Author(s) : Cheng Zhi, Mingyuan Hu, Kaige Duan, Chaoxi Zhou, Dongming Yu 2018 Las-Vegas

The PE properties are obviously improved by crosslinking modified to TPEX, which can approach to that of PEX, while still remaining thermoplastic. It can be processed by the common forming method of thermoplastic; the products can be hot-melted and the scrap can be processed to be reused. The two-layer structure...

Preserving marine environment from hydrocarbons contamination with leak-free PE100 pipes used in off-shore oil wells

Author(s) : Farraj Tashman, Mohamed Ali Jaber, Sultan Al Kendi 2018 Las-Vegas

Analysis of subsea PE100 pipeline conveying oil produced water effluent with traces of hydrocarbons was done after 5 years of leak-tight continuous operation at boundary conditions showed that properties of PE100 pipes are intact when benchmarked with test results conducted on reference pipe sample kept for this...

Sensitivity of strain hardening modulus to molecular structure of polyethylene

Author(s) : Suleyman Deveci, Senthil K. Kaliappan, Joel Fawaz, Umesh Gadgoli 2018 Las-Vegas

A series of non-commercial bimodal high density ethylene-α-olefin copolymers with systematically controlled molecular parameters over a wide range that would result in extremely low and high strain hardening modulus were prepared and tested Strain hardening modulus has been published as a standard test method (ISO...

Slow crack growth resistance of non-virgin polymers

Author(s) : Andreas Frank, Isabelle J. Berger, Mario Messiha, Carl-Gustaf Ek, Norbert Schuler, Jens-Martin Storheil, Erwin Mayrbäurl, Steve Heeley, Frank Krause, Lodewijk Niemöller, Philippe Gabriëls, Yogesh S. Deshmukh, Florian Arbeiter, Thomas Koch, Gerald Pinter 2018 Las-Vegas

In order to improve the circular economy of polymers in terms of sustainability and reduced carbon footprint, the increased use of recyclates has become a topic of major importance. Due to their long design lifetimes, pipe applications represent an excellent opportunity to create added value to non-virgin polymers. In...

Squeeze-off and rerounding of plastic pressure pipes

Author(s) : Juergen Wuest, Mirko Wenzel, Andreas Bilsing, Peter Postma, Werner Wessing 2018 Las-Vegas

Within the scope of a DVGW (German Technical and Scientific Association for Gas and Water) research project the technology of squeezing-off for PE pipes at operating pressures higher than 1 bar and the extension to new materials with higher operating pressures were investigated. For this purpose the tightness of the...

Members of the Association

BOREALISBOROUGEFormosa Plastics CorporationINEOS O&PIRPCKazanorgsintez PJSCKorea Petrochemical IND. Co., LTD (KPIC)LyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
TOP