Our site uses cookies necessary for its proper functioning. To improve your experience, other cookies may be used: you can choose to disable them. This can be changed at any time via the Cookies link at the bottom of the page.


Sustainability is achieved through less time for excavation, less handling of soil excavated from trench, less hauling of materials (both to and from construction sites), and reuse and recycling. This all means less energy consumption: In many cases, thes

 

Plastic Pipes Conference Association # 2021 Amsterdam

Amster Howard

Deeper pipe burial, less expensive and environmentally friendly backfill, uniform language for contractors and inspectors, simplified installations for smaller pipe, and allowable construction in poor soil conditions are highlights in the latest edition of AWWA M55 and all benefit the users of HDPE pressure pipe. This paper summarizes the significant updates to the design and installation recommendations in the Second Edition of AWWA (American Water Works Association) Manual M55 PE Pipe – Design and Installation to be published in 2020. For design, these updates include higher Eʹ (Modulus of Soil Reaction) values, use of composite Eʹ values, use of Uniform Soil Classes, use of geotextiles, and terminology. For installation, there is revised information on trench width, flowable fill, inspection and soil testing, and compaction requirements. These changes reflect the recent revisions to ASTM D2774 Standard Practice for Underground Installation of Thermoplastic Pressure Piping. The changes are applicable to all pipe diameters and to all pipe stiffness values. The Second Edition of M55 encourages the use of basic installation and engineered installation for buried pressure PE pipe. The basic installation is for HDPE pipe stiff enough to not need special bedding and embedment, for shallow burial with no live load, and for stable trench wall support. In this case, the HDPE pipe can be laid on the trench bottom and backfilled with compacted soil from the excavation. This covers the majority of HDPE pressure pipe installations. For other conditions, the engineered installation means selecting an HDPE pipe and corresponding installation details to meet deflection, compressive strength, and buckling requirements. The engineered installation approachrecommends an uncompacted bedding and an uncompacted padding zone over the top of the pipe.

Related keywords : HDPE, AWWA M55, PE 4710, design, installation, geotechnical, soil modulus, deflection.
Please note that the whole article content is available on PPCA website only :

Related papers

2021 Amsterdam : A TRADE ASSOCIATION EXPLORED

Author(s) : Drew Mueller, Peter Dyke

HDPE Pipe holds a dominant position in several markets in North America: natural gas distribution, oil patch, mining, landfill and geothermal. So why are polyethylene’s municipal water and wastewater market shares so much lower than these other industries? How has the polyethylene industry been successful in growing...

2021 Amsterdam : APPLICATIONS OF HDPE PIPING TO SUPPLY WATER TO RURAL VILLAGES IN MOROCCO

Author(s) : Donald Swen, Leanne Pichay, Nicholas Vallin, Alice Wu, Jim Johnston

In the rural commune of Ait Bayoud, Morocco, two of the most remote villages in the area, Ilguiloda and Izgouaren, live with water scarcity. To meet their water needs, women and children walk several kilometers to the nearest spring each day, often multiple times a day. Consequently, children cannot attend school...

2021 Amsterdam : CHALLENGING THE 10% WALL THICKNESS RULE FOR HDPE MARINE PIPELINES

Author(s) : Ilija Radeljic, Ebbe Smith

HDPE pipe can be relatively easily scratched during the manipulation on the site, which is especially true for the marine pipelines. Installing the scratched marine pipe with the S bend method presents a risk and repair methods are usually performed. Currently, there is no standard defining the repair procedure, in...

2021 Amsterdam : CHEAPER AND BETTER NETWORKS REALISED WITH PRACTICAL DESIGN SOFTWARE

Author(s) : Andreas Moerman, Flip van der Valk, Mirjam Blokker KWR, Tjakko Haaijer, Jan Vreeburg,

Drinking water companies with ageing networks are facing vast amounts of drinking water network reconstructions during the coming decades. This development coincides with the energy transition, which puts pressure on the available space underground. These external drivers give drinking water companies an opportunity...

2021 Amsterdam : DESIGN BUILD OF A 54” REDUNDANT FORCE MAIN UTILIZING HORIZONTAL DIRECTIONAL DRILLING

Author(s) : Bruce Mowry, PhD, P.E., Brian Dorwart, P.G., P.E., David Mancini, Bryan Fletcher, Roger Williams, P.E., Rene Brito, EIT, Arnelio Alfonso, P.E .

The City of Miami Beach owns and operates a 54-inch sanitary sewage PCCP force main (FM) that was built in 1977. This FM is the only transmission pipeline for conveying about 22 million gallons per day (MGD) of raw sewage to the wastewater treatment plant. In 2012, the City identified structural deficiencies in the...

2021 Amsterdam : DESIGN OF LARGE DIAMETER BURIED PIPES

Author(s) : Anders Andtbacka, Peter Sejersen

In the late nineties a study of the behavior of buried thermoplastics pipes was carried out. The project had input and participants from both the plastic pipe industry as well as from external organizations. Six external leading experts in the field of pipeline design, not necessarily plastics pipes design, have been...

2021 Amsterdam : DEVELOPMENTS IN NORTH AMERICAN CONDUIT PRACTICES

Author(s) : Tom Stewart, Richard Hicks, Patrick Vibien, Lance MacNevin

Arguably, broadband technologies have become as vital to society as water delivery, waste removal and energy distribution. However, the role of plastic conduit in broadband is often overlooked within the piping industry and society in general. HDPE conduit is an essential component to the build -out of 5G cell...

2021 Amsterdam : DRAINAGE HANDBOOK STRUCTURAL DESIGN PROCEDURE FOR CORRUGATED POLYOLEFIN PIPE

Author(s) : Joe Babcanec, P.E., Dan Currence, P.E.

The newly released Drainage Handbook provides complete guidance on corrugated polyolefin pipe. Perhaps the biggest contribution this new handbook makes to the advancement of both HDPE and PP corrugated plastic pipe is the design procedure presented. The design procedure reflects the industry’s recommended practice for...

2021 Amsterdam : EXPERIMENTAL DETERMINATION OF THE EFFECTS OF LIQUID HYDROCARBONS ON THE LONG-TERM CREEP RUPTURE PROPERTIES OF PRESSURE PIPE GRADE UNPLASTICIZED POLYAMIDE-12

Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Buc Slay

The effects of liquid hydrocarbons on long term strength of pipe grade thermoplastic resins is an important consideration when designing pressure pipe for use in the oil and gas industry. There is an extensive body of work going back several decades descri bing these effects for pipe grade polyethylenes, and all...

2021 Amsterdam : FINDING THE RIGHT PIPE TEST FOR POLYETHYLENE WITH RAISED RESISTANCE TO SLOW CRACK GROWTH

Author(s) : Ernst van der Stok

For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...

2021 Amsterdam : FINITE ELEMENT METHOD (FEM) USED TO SIMULATE THE STRESS/STRAIN OF THE POINT LOAD TEST (PLT) IN A BROADER STUDY TO SUPPORT THE FUTURE ISO TEST STANDARD

Author(s) : S. Nestelberger, J. Cheng

The Point Load Test (PLT) [‎ 1, ‎ 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support of...

2021 Amsterdam : FLOWABLE FILL FOR PLASTIC PIPE

Author(s) : Amster Howard

Flowable fill is used for many applications, but mainly for pipe trench embedment and backfill. There are three ways that using flowable fill can be kind to the environment. Because flowable fill is self-leveling and has a strength greater than the native soil, the trench cross section can be minimized. This means...

2021 Amsterdam : FROM MULTILAYER LAMINATES TO INDUSTRIAL PIPE APPLICATIONS – A GUIDELINE

Author(s) : Gerald Pinter, Johannes Wiener, Florian Arbeiter, Abhishek Tiwari, Otmar Kolednik

For pipe applications, catastrophic failure due to crack growth has to be prevented by all means. Techniques to develop new and even tougher pipe materials are explored in this contribution. The aim is to create a multi-layer architecture, that exhibits high toughness as well as damage tolerance towards sharp notches....

2021 Amsterdam : HISTORY OF HDPE USE AT THE CITY OF PALO ALTO FOR POTABLE WATER DISTRIBUTION

Author(s) : Greg Scoby, PE

This paper will detail the steps taken during adoption of HDPE for potable water systems improvements including material justification, creation of related specifications, investigation of available piping components, qualification of contractors and the construction/inspection of related systems. The City of...

2021 Amsterdam : INTAKE AND DISCHARGE LARGE DIAMETER PIPELINE PROJECT FOR COAL FIRED GENERATION PLANT IN JAPAN

Author(s) : Mitsuaki Tokiyoshi, Yuichi Shibao, Yoshitaka Watanabe, Takeshi Yoshioka, Takashi Oka, Kohei Sasaki

It was common to use those pipelines for Steel in Japan. However Steel pipes have the long standing problems that it has been needed maintenance costs for rust prevention and antifouling property. Therefore it had been carried out the project that large diameter polyethylene pipeline applied for circulating water...

2021 Amsterdam : LARGE DIAMETER & THICK WALL HDPE PIPES PRODUCED AND DEVELOPED IN THE MIDDLE EAST – 3 CASE STORIES

Author(s) : Eng. Grigorios Vigellis, Eng. Mohamed Hageb

Continuous development and innovation in the production of plastic pipes made by high density polyethylene (HDPE) has enabled the industry to produce much larger diameter systems than ever believed possible. The enablers for production of such large plastic pipes are three main pillars: continuous innovation...

2021 Amsterdam : NEW CHALLENGING APPLICATION AS USED PEAT LAND HIGH PERFORMANCE PE-SGF PIPELINE SYSTEM FOR INTERNAL PRESSURE APPLICATION AS LARGE DIAMETER

Author(s) : Kensei INOUE, Mitsuaki TOKIYOSHI, Joji HINOBAYASHI, Takeshi KARINO, Toshinori KAWABATA, Takashi KURIYAMA

As the worldwide problems are over-population, unusual weather like as localized heavy rain and climate change. Against those problem, it has to need new projects to make a new agricultural field, drainage pipeline system and to spread the new underground irrigation system at peat land whereas spots of about 2 million...

2021 Amsterdam : ONLINE ENGINEERING TOOLS FOR DESIGN AND FIELD ENGINEERS

Author(s) : Dustin Langston

The design and installation of polyethylene systems can be complex, specifically due to the many applications and environmental conditions that surround those systems. Online design tools have been developed to address this complexity and the various factors that must be considered. These online tools used widely in...

2021 Amsterdam : PIPE FOR FIRE EXTINGISHING DEVICE

Author(s) : Yoshikatsu NISHIDA, Yukihisa YAMADA, Masaya IWASAKI, Masaru TOMOBE, Yuichi KOUGA

By using polyethylene as the main material for this fire extinguishing device pipe, a resin-made fire extinguishing device is developed that is maintenance-free for eight years and can cope with the abnormal heat generation of lithium ion batteries. In order to prevent the internal extinguishant from permeating and...

2021 Amsterdam : POLYETHYLENE OF RAISED TEMPERATURE (PE-RT) IN LOW TEMPERATURE DISTRICT HEATING SYSTEMS

Author(s) : Alex Stolarz, Klaus Grønnegaard Lauridsen

Low temperature District Heating – COOL DH – addresses the challenges of the upcoming decades in the energy sector for new housing developments. Energy efficiency is an important aspect of modern building construction. Improved building insulation and other technologies result in lower heat demand and enable new...

Members of the Association

BOREALISBOROUGEFormosa Plastics CorporationHanwha TotalEnergiesINEOS O&PIRPCKorea Petrochemical IND. Co., LTD (KPIC)LyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
TOP