Our site uses cookies necessary for its proper functioning. To improve your experience, other cookies may be used: you can choose to disable them. This can be changed at any time via the Cookies link at the bottom of the page.


PVC – Review of Available Technologies for Trenchless Pipeline Applications

 

Papers

Plastic Pipes Conference Association # 2014 Chicago

Nigel Jones

PVC is clearly widely known as a material highly suited for trenched or open-cut pipe installations for a variety of uses. Less widely discussed is the fact that PVC offers the widest range of options for trenchless installations. While open-cut installations continue to be the standard method of construction for new projects where access is readily available, for projects in developed urban areas various trenchless technologies are making no dig options more economically viable and appealing. For rehabilitation of our cities aging pipelines, trenchless technologies make it possible to restore the structural integrity and fluid velocity of the pipeline whilst minimising the financial and social costs. In this paper, the options for and advantages of PVC in common trenchless installation techniques are reviewed. 

Common with other countries around the world, the use of trenchless pipeline installation technologies is expanding in Australia, with this trend is expected to continue. This has been confirmed in discussions held with water utilities and local governments, who continually seek the most cost effective ways to install and rehabilitate pipelines. Where new pipelines are installed in open areas, open-cut or trenched installations will likely continue to be the most efficient and cost effective way of completing the installation for some time. However, for installations in densely populated urban areas, open-cut installations are disruptive, costly and increasingly impractical. 

In many cities in the developed world, corrosion of water pipelines installed many years ago continues to become an increasing burden for water utilities and source of annoyance for end users affected by the frequent breaks in these pipelines1 . Ever increasing maintenance costs and compensation payments to flooded end users add to this burden. In Australia, it is becoming well accepted that replacing corroded pipe with another corrosion prone product does not represent progress. Thus the overwhelming majority of new and replacement water pipelines being installed in Australia are plastic, predominantly PVC. With the expected increase in trenchless installations in the future, it is critical for the plastic pipe industry to have a range of technologies available to cover the different challenges posed by trenchless pipeline installations. The versatility of PVC, particularly its excellent balance between strength, stiffness and flexibility make it an ideal material to cover a wide range of installation situations, particularly when challenges exist. This paper looks at different trenchless PVC technologies used in Australia and discusses why PVC is well placed to continue its growth in this market. 

Related keywords : technologies, material, trenchless, installation, infrastructure, grow, corrosion, long length, pipeline, crack resistant.
Please note that the whole article content is available on PPCA website only :

Related papers

2021 Amsterdam : A NEW GENERATION OF HIGH PERFORMANCE BIAXIALLY ORIENTED POLYETHYLENE AND POLYPROPYLENE PRESSURE PIPES

Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger

Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...

2021 Amsterdam : CHALLENGING THE 10% WALL THICKNESS RULE FOR HDPE MARINE PIPELINES

Author(s) : Ilija Radeljic, Ebbe Smith

HDPE pipe can be relatively easily scratched during the manipulation on the site, which is especially true for the marine pipelines. Installing the scratched marine pipe with the S bend method presents a risk and repair methods are usually performed. Currently, there is no standard defining the repair procedure, in...

2021 Amsterdam : DESIGN OF LARGE DIAMETER BURIED PIPES

Author(s) : Anders Andtbacka, Peter Sejersen

In the late nineties a study of the behavior of buried thermoplastics pipes was carried out. The project had input and participants from both the plastic pipe industry as well as from external organizations. Six external leading experts in the field of pipeline design, not necessarily plastics pipes design, have been...

2021 Amsterdam : EFFECT OF CHLORINATED WATER ON THE FATIGUE CRACK GROWTH RESISTANCE OF POLYETHYLENE COMPOUNDS WITH RECYCLATE CONTENT FOR PIPE APPLICATIONS

Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang

For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...

2021 Amsterdam : FINDING THE RIGHT PIPE TEST FOR POLYETHYLENE WITH RAISED RESISTANCE TO SLOW CRACK GROWTH

Author(s) : Ernst van der Stok

For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...

2021 Amsterdam : FINITE ELEMENT METHOD (FEM) USED TO SIMULATE THE STRESS/STRAIN OF THE POINT LOAD TEST (PLT) IN A BROADER STUDY TO SUPPORT THE FUTURE ISO TEST STANDARD

Author(s) : S. Nestelberger, J. Cheng

The Point Load Test (PLT) [‎ 1, ‎ 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support of...

2021 Amsterdam : FLOWABLE FILL FOR PLASTIC PIPE

Author(s) : Amster Howard

Flowable fill is used for many applications, but mainly for pipe trench embedment and backfill. There are three ways that using flowable fill can be kind to the environment. Because flowable fill is self-leveling and has a strength greater than the native soil, the trench cross section can be minimized. This means...

2021 Amsterdam : FULL SCALE EVALUATION OF THE CORE TUBES GROUT INJECTION METHOD FOR LARGE DIAMETER HDPE OFFSHORE PIPELINES SINKING

Author(s) : Mehdi Jalili, Maziar Neyshabouri, Ashkan Nasrollahi

Seawater intake/outfall systems in nine lines with 1400/2200 m length and large diameter polyethylene pipelines (O.D. 2700 mm dia.) had been designed and fabricated to supply 4,200,000 cubic meters per day seawater into a basin in northern coast of Persian Gulf, Bandar Abbas/IRAN. The usual sinking by additional...

2021 Amsterdam : INTAKE AND DISCHARGE LARGE DIAMETER PIPELINE PROJECT FOR COAL FIRED GENERATION PLANT IN JAPAN

Author(s) : Mitsuaki Tokiyoshi, Yuichi Shibao, Yoshitaka Watanabe, Takeshi Yoshioka, Takashi Oka, Kohei Sasaki

It was common to use those pipelines for Steel in Japan. However Steel pipes have the long standing problems that it has been needed maintenance costs for rust prevention and antifouling property. Therefore it had been carried out the project that large diameter polyethylene pipeline applied for circulating water...

2021 Amsterdam : INVESTIGATING THE INFLUENCE OF CHANGES IN MOLECULAR STRUCTURE OF POLYAMIDE 12 GRADES ON THE RESISTANCE AGAINST SLOW CRACK GROWTH

Author(s) : Mario Messiha, Britta Gerets, Jan Heimink, Andreas Frank, Florian Arbeiter, Gerald Pinter

A majority of field failure of viscoelastic plastic pipes can be attributed to slow crack growth (SCG) and has become crucial in terms of characterization of newly developed materials – particularly, if they are designed for pressurized pipe applications. In this study, investigations in terms of SCG resistances...

2021 Amsterdam : MULTILAYER POLYMER PIPES – THE INFLUENCE OF RESIDUAL STRESS ON FATIGUE LIFETIME

Author(s) : Lukas Travnicek, Pavel Hutar, Jan Poduska, Andreas Frank, Florian Arbeiter, Jaroslav Kucera, Jiri Sadilek, Gerald Pinter, Lubos Nahlik

The application of recycled material in pressure piping systems has been considered lately – it was suggested, that the recycled polyethylene could be used as a part of a multilayer pipe together with virgin material. This type of pressure pipes is not availableon the market yet, so their properties can be only...

2021 Amsterdam : NEW CHALLENGING APPLICATION AS USED PEAT LAND HIGH PERFORMANCE PE-SGF PIPELINE SYSTEM FOR INTERNAL PRESSURE APPLICATION AS LARGE DIAMETER

Author(s) : Kensei INOUE, Mitsuaki TOKIYOSHI, Joji HINOBAYASHI, Takeshi KARINO, Toshinori KAWABATA, Takashi KURIYAMA

As the worldwide problems are over-population, unusual weather like as localized heavy rain and climate change. Against those problem, it has to need new projects to make a new agricultural field, drainage pipeline system and to spread the new underground irrigation system at peat land whereas spots of about 2 million...

2021 Amsterdam : PIPE FOR FIRE EXTINGISHING DEVICE

Author(s) : Yoshikatsu NISHIDA, Yukihisa YAMADA, Masaya IWASAKI, Masaru TOMOBE, Yuichi KOUGA

By using polyethylene as the main material for this fire extinguishing device pipe, a resin-made fire extinguishing device is developed that is maintenance-free for eight years and can cope with the abnormal heat generation of lithium ion batteries. In order to prevent the internal extinguishant from permeating and...

2021 Amsterdam : PRESSURE PIPELINE MADE OF HDPE – DETERMINATION OF REMAINING LIFETIME AFTER 47 YEARS OF OPERATION IN LAKE OSSIACH (CARINTHIA, AUSTRIA)

Author(s) : Ulrich Schulte, Dr. -Ing. Joachim Hessel

In order to protect the Austrian lakes effectively against the discharge of effluent, a 13 km long pressure pipeline made of high density polyethylene was laid on the bottom of Lake Ossiach back in 1971. The DN355 to DN200 pipes were produced from a first generation HDPE-compound. The classification would have been...

2021 Amsterdam : PVC PIPES WITH SUPERIOR ROOT INTRUSION RESISTANCE

Author(s) : Argnani Claudio, Ing. Gianpaolo Contarini

...Clogging of the pipes can be experienced in sewer systems after a short period of service, due to the intrusion of roots from plants and trees. Plants, and in particular their roots, are attracted by the water flowing inside the pipes. These roots will strain the connections between pipes, in particular the sockets...

2021 Amsterdam : RESTRAINED MECHANICAL JOINING DEVICES FOR HDPE PIPE: PERFORMANCE CHARACTERISTICS AND TEST PROTOCOL

Author(s) : Justin Brandt, Mike Griffin, Tony Cuvo

As plastic pipe gains share in new markets and applications, additional joining methods add further value, enabling continued growth for plastic pipes. To date, definitions of a “fit-for-purpose” mechanical joint for High Density Polyethylene (HDPE) pressure piping systems can vary significantly. As such, mechanical...

2021 Amsterdam : SLOW CRACK GROWTH IN POLYETHYLENE PIPES: FRACTURE SURFACE EVIDENCE FOR THE SLOW CRACK GROWTH MECHANISM IN ACCELERATED TESTS

Author(s) : Mark Boerakker, Rudy Deblieck, a Harm Caelers, Arno Wilbers, Tine Boonen a DSM, Britta Gerets, Mirko Wenzel

Components made of plastic are facing ever-increasing demands with respect to their production, use and durability. This also holds for gas and drinking water pressure pipes made of high-density polyethylene (PE-HD), where service lifetimes of up to 50 years and in some cases even 100 years are required. One of the...

2021 Amsterdam : SLOW CRACK GROWTH RESISTANCE OF REPROCESSED PVC

Author(s) : Andreas Frank, Mario Messiha, Günter Dreiling, Norbert Schuler, Jens-Martin Storheil, Erwin Mayrbäurl, Stuart Ramella, Frank Krause, Rudi Berning, Philippe Gabriëls, Alpay Aydemir, Thomas Koch, Florian Arbeiter, Gerald Pinter

The Cyclic Cracked Round Bar (CRB) Test has been applied to study the slow crack growth (SCG) resistance of virgin, recycled, and reprocessed PVC-U. This fracture mechanical test allows a quick ranking of the SCG resistance of PVC-U. A clear correlation between the K-value and the SCG resistance has been elaborated....

2021 Amsterdam : Sustainability is achieved through less time for excavation, less handling of soil excavated from trench, less hauling of materials (both to and from construction sites), and reuse and recycling. This all means less energy consumption: In many cases, thes

Author(s) : Amster Howard

Deeper pipe burial, less expensive and environmentally friendly backfill, uniform language for contractors and inspectors, simplified installations for smaller pipe, and allowable construction in poor soil conditions are highlights in the latest edition of AWWA M55 and all benefit the users of HDPE pressure pipe. This...

2021 Amsterdam : TESTING SPOOLABLE REINFORCED FLEXIBLE PIPES AND LINER MATERIAL FOR HIGH-PRESSURE HYDROGEN TRANSPORT

Author(s) : Sjoerd Jansma, Peter Cloos, Ernst van der Stok

This paper describes two different test methods used to determine the permeation rate of hydrogen through a reinforced thermoplastic pipe (RTP) system with a HDPE liner pipe and a gas-tight layer at a pressure of 42 bar(g) hydrogen and ambient temperature. One method involThe results of the aforementioned tests...

Members of the Association

BOREALISBOROUGEFormosa Plastics CorporationHanwha TotalEnergiesINEOS O&PIRPCKorea Petrochemical IND. Co., LTD (KPIC)LyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
TOP