Our site uses cookies necessary for its proper functioning. To improve your experience, other cookies may be used: you can choose to disable them. This can be changed at any time via the Cookies link at the bottom of the page.


Characterization of post-use polyethylene and polypropylene recyclate blends for pipe applications

 

Papers # 2018 Las-Vegas

Despite recent efforts in promoting the utilization of recycled polymeric materials for more diverse and more advanced applications, there are still significant knowledge gaps with regards to the applicability of certain recyclate types for specific “re-use” purposes. When it comes to pipe applications, for instance, a considerable body of work exists on recycled polyvinylchloride (rPVC), however, systematic investigations of mechanically recycled polyethylene (rPE) and polypropylene (rPP) for structural performance applications such as pipes are still rare. Especially studies of the resistance against slow crack growth, which is a highly relevant failure mechanism of pressurized plastic pipes, are lacking for rPE and rPP. This is particularly true for blends of rPE and rPP, which are of high practical relevance not at least due to cost advantages over mono-fraction recyclates.

In the present work two rPE and two rPP grades originating from post-use sources such as bottle caps, extrusion blow molded objects and injection molded items were analyzed together with six PE-PP recyclate blends produced from these four base recyclates. The recyclate blends differed in the rPE-to-rPP ratio and the amount of calcium carbonate additive used in the recyclate compounding and blending step. 

Composition and molecular characteristics of both post-use base recyclates and recyclate blends were investigated using Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). A subsequent mechanical characterization based on concepts of linear-elastic fracture mechanics was performed using compact-type (CT) specimens to determine the crack growth resistance of the various recyclate materials under cyclic loads. 

Small amounts of legacy substances were detected in both rPE and rPP. In terms of crack growth resistance, clear rankings of the materials were derived, with the recyclate blends being inferior to the neat rPE or rPP materials.

Related keywords : Polyethylene polypropylene blend, mechanical recycling, post-consumer, legacy substances, crack growth resistance.
Please note that the whole article content is available on PPCA website only


Related papers

2021 Amsterdam : A COST BENEFIT ANALYSIS OF PVC PIPES RECYCLING

Author(s) : A. Marangoni

The quality of infrastructures is a key driver for maximizing the performance of the utilities networks and minimizing the environmental impacts associated with their operation. The water and sewer pipes are key network elements to guarantee a satisfactory service to the citizens. Their end-of-life management is an...

2021 Amsterdam : A NEW GENERATION OF HIGH PERFORMANCE BIAXIALLY ORIENTED POLYETHYLENE AND POLYPROPYLENE PRESSURE PIPES

Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger

Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...

2021 Amsterdam : AN EVIDENTIAL APPROACH TO USE OF POLYETHYLENE PIPE FOR HYDROGEN FUEL GASES

Author(s) : Derek Muckle

A technical program has been undertaken to provide evidence on the suitability of polyethylene pipe and fitting systems for the distribution of hydrogen fuel gas. The underlying principle has been to evaluate material in the form of a pipe and to consider the performance of the pipe and of the welded jointing systems...

2021 Amsterdam : DESIGN OF A DISTRIBUTED STRAIN MONITORING SYSTEM FOR HDPE WATER PIPELINES CROSSING AN EARTHQUAKE FAULT

Author(s) : Peter Hubbard, Linqing Luo, Andrew Yeskoo, Kenichi Soga, Krista (Moita) Araica, Gus Cicala, Marshall McLeod

Seismically active faults pose a risk to buried water pipelines that can be complicated to quantify. Fault type, slip rate, pipeline geometry, and soil conditions all factor into a complex soil-pipeline interaction. For critical pipelines that cross faults, high-density polyethylene (HDPE) has become an attractive...

2021 Amsterdam : DEVELOPMENT OF A RAPID AND INNOVATIVE IN-FACTORY PROCEDURE FOR TESTING THE PERFORMANCES OF PE PIPES CONTAINING VARIOUS PROPORTIONS OF RECYCLED POLYMER MATERIAL

Author(s) : Dominique GUEUGNAUT, Pascal AUSSANT, Romuald BOUAFFRE, Myriam BECHROURI

Concerns regarding the environment and sustainable development have revived interest in the reprocessing and re-use of polymer materials from manufactured objects that have reached the end of their operating life. Within this framework, formal professional agreements have been put in place at global level under the...

2021 Amsterdam : EFFECT OF CHLORINATED WATER ON THE FATIGUE CRACK GROWTH RESISTANCE OF POLYETHYLENE COMPOUNDS WITH RECYCLATE CONTENT FOR PIPE APPLICATIONS

Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang

For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...

2021 Amsterdam : EFFECT OF INSUFFICIENT HOMOGENIZATION DURING THE EXTRUSION OF POLYETHYLENE PIPES ON BUTT FUSION JOINT INTEGRITY

Author(s) : Mike Troughton, Amir Khamsehnezhad, Changyi Yu

When butt fusion welding polyethylene (PE) pipes in the field, it is often specified that the pipes must undergo fusibility testing in all combinations of suppliers, diameters and thicknesses before being fused in production. This is a very onerous and expensive task, but must be carried out to ensure that the PE...

2021 Amsterdam : EVALUATION OF MECHANICAL PROPERTIES AND LONG- TERM DURABILITY OF AGED POLYETHYLENE PIPES FOR GAS DISTRIBUTION

Author(s) : Shuhei Nishida, Shintaro Iwasaki, Hidefumi Yamanaka, Takahiro Kasatani

Polyethylene pipelines have been used for natural gas service applications for over 40 years in Japan. It is thought that they will continue to be used widely for many years. Therefore, it is important to confirm the conditions of the existing pipelines being used for the long term. In this study, polyethylene pipes...

2021 Amsterdam : EXPERIMENTAL DETERMINATION OF THE EFFECTS OF LIQUID HYDROCARBONS ON THE LONG-TERM CREEP RUPTURE PROPERTIES OF PRESSURE PIPE GRADE UNPLASTICIZED POLYAMIDE-12

Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Buc Slay

The effects of liquid hydrocarbons on long term strength of pipe grade thermoplastic resins is an important consideration when designing pressure pipe for use in the oil and gas industry. There is an extensive body of work going back several decades descri bing these effects for pipe grade polyethylenes, and all...

2021 Amsterdam : FINDING THE RIGHT PIPE TEST FOR POLYETHYLENE WITH RAISED RESISTANCE TO SLOW CRACK GROWTH

Author(s) : Ernst van der Stok

For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...

2021 Amsterdam : FINITE ELEMENT METHOD (FEM) USED TO SIMULATE THE STRESS/STRAIN OF THE POINT LOAD TEST (PLT) IN A BROADER STUDY TO SUPPORT THE FUTURE ISO TEST STANDARD

Author(s) : S. Nestelberger, J. Cheng

The Point Load Test (PLT) [‎ 1, ‎ 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support of...

2021 Amsterdam : FROM MULTILAYER LAMINATES TO INDUSTRIAL PIPE APPLICATIONS – A GUIDELINE

Author(s) : Gerald Pinter, Johannes Wiener, Florian Arbeiter, Abhishek Tiwari, Otmar Kolednik

For pipe applications, catastrophic failure due to crack growth has to be prevented by all means. Techniques to develop new and even tougher pipe materials are explored in this contribution. The aim is to create a multi-layer architecture, that exhibits high toughness as well as damage tolerance towards sharp notches....

2021 Amsterdam : HYDROGEN TRANSPORT IN POLYMER PIPES FOR NATURAL GAS DISTRIBUTION – TEN YEARS OF EXPERIENCE

Author(s) : Stephan Kneck, Henrik Iskov

It has become ever clearer that the resources of natural gas are an energy source, which will be less important in the future due to limitations in use of natural reserves. In order to prepare for the future the gas industry is looking at the alternative fuel gases, one such fuel gas is hydrogen. In order to prepare...

2021 Amsterdam : INVESTIGATING THE INFLUENCE OF CHANGES IN MOLECULAR STRUCTURE OF POLYAMIDE 12 GRADES ON THE RESISTANCE AGAINST SLOW CRACK GROWTH

Author(s) : Mario Messiha, Britta Gerets, Jan Heimink, Andreas Frank, Florian Arbeiter, Gerald Pinter

A majority of field failure of viscoelastic plastic pipes can be attributed to slow crack growth (SCG) and has become crucial in terms of characterization of newly developed materials – particularly, if they are designed for pressurized pipe applications. In this study, investigations in terms of SCG resistances...

2021 Amsterdam : INVESTIGATION OF THE QUALITY CHARACTERISTICS OF POLYAMIDE 12 PIPE WELDS

Author(s) : M. Eckes & Dr. B. Baudrit, Dr. M. Troughton & D. Wylie, H. van Laak & J. Fritz

Unplasticized polyamide 12 (PA-U12) is increasingly being used in pipe applications, especially in the gas sector. However, the material behavior in the usual quality tests for pipe welds has not yet been thoroughly investigated. For this reason, two research institutes, worked in cooperation with a manufacturer of...

2021 Amsterdam : MECHANICAL INTERGRITY OF HDPE BUTT FUSION JOINTS – EFFECT OF CARBON BLACK DISTRIBUTION

Author(s) : Suleyman Deveci, Nisha Preschilla, Sulistiyanto Nugroho, Birkan Eryigit

Carbon black (CB) has been used as a perfect and the cheapest solution to prevent photo degradation of polyethylene against UV light exposure. The effect of carbon black on the mechanical properties of polyethylene pipes was studied extensively, but only on well dispersed and distributed carbon black...

2021 Amsterdam : NEW CROSSLINKED POLYETHYLENE PIPES WITH HIGH THERMAL STABILITY AND LOW PERMEATION FOR PETROLEUM ENGINEERING

Author(s) : Gisbert Rieß, Katrin Berger, Anna Kaltenegger-Uray, Florian Arbeiter

The effect of electron-beam and silane crosslink of polyethylene on the resulting permeation characteristics was investigated. Polyethylene sheets were processed and crosslinked by irradiation with high energy electrons and by grafting and subsequent hydrolysis of organosilanes during a reactive extrusion process. The...

2021 Amsterdam : PLASTIC PIPES FOR WATER DRAINAGE IN RAIL- AND MOTORWAY TUNNELS – A MAJOR CHALLENGE

Author(s) : Florian Arbeiter, Tobias Schachinger, Stefanie Eichinger, Gisbert Rieß, Michael Stur, Michael Steiner, Florian Saliger

Plastic pipes are of outstanding importance for the distribution of potable and process waters, oil and gas, as well as for sewer and waste water disposal. However, plastic pipes are also used in many other technical areas. Especially in European countries with mountainous regions, such as Austria, Switzerland, Italy...

2021 Amsterdam : POLYETHYLENE OF RAISED TEMPERATURE (PE-RT) IN LOW TEMPERATURE DISTRICT HEATING SYSTEMS

Author(s) : Alex Stolarz, Klaus Grønnegaard Lauridsen

Low temperature District Heating – COOL DH – addresses the challenges of the upcoming decades in the energy sector for new housing developments. Energy efficiency is an important aspect of modern building construction. Improved building insulation and other technologies result in lower heat demand and enable new...

2021 Amsterdam : POLYPROPYLENE PIPE IN DEMANDING HYDRONIC HEATING APPLICATIONS

Author(s) : Steve Sandstrum, Chris Ziu

The market for high performance polypropylene (PP) piping systems in North America continues to evolve. Generally, PP piping systems have performed exceptionally well in a variety of challenging HVAC, industrial and plumbing applications. As a result, the engineering community in North America is embracing higher...

Members of the Association

BOREALISBOROUGEFormosa Plastics CorporationINEOS O&PIRPCKazanorgsintez PJSCKorea Petrochemical IND. Co., LTD (KPIC)LyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
Webinar : Benefits of PE100+ Material and their use in Trenchless TechnologyWebinar : Benefits of PE100+ Material and their use in Trenchless Technology

On march 10th, was held the PE 100+ ASSOCIATION first webinar. The webinar was a great success and attracted a large audience. 

TOP