STRAIN HARDENING MODULUS: A MEASURE FOR RANKING TIME TO FAILURE OF RANDOM POLYPROPYLENE PIPE MATERIALS

Papers # 2016 Berlin

The resistance to Slow Crack Growth of HDPE is related to the strain hardening modulus as determined from a tensile test at 80 °C. Correlatio ns between traditional methods (e.g. Full Notched Creep Test, Notched Pipe Test) and other accelerated tests (e.g. fatigue testing) show that the same failure mechanism is probed and that the strain hardening modulus can be used to study and rank the expected SCG behavior of HDPE materials. With the huge benefits achieved for the HDPE pipe grades using raw materials, the logical next step is expansion of the benefits of the strain hardening method to other pipe grade materials like PP. The strain hardening method is optimized (e.g testing temperature, testing speed) for r-PP pipe materials. For different PP pipe grade materials strain hardening is determined and ranking of the strain hardening results to time to failure of pipes is discussed. 

Random Poly propylene (r-PP) is widely used in cold and warm water pressure pipe applications. The traditional test method (Internal Pressure Test) requires large volumes of material and long testing times (>1 yr) in assessing this property in order to guarantee lifetimes of 50 years and above. These extremely long testing times are a serious concern in using these methods for determination of time to failure behavior of resins and manufactured pipes as well as in the development of new grades, in batch release testing and quality control. Additionally, material wastage, energy costs and water use in traditional methods are undesirable from a sustainability point of view. In recent years within SABIC, a simple but effective test method – tensile strain hardening modulus assessment – requiring only small amounts of material (grams) and delivering reproducible, reliable and accurate results within only a few hours was developed for HDPE pipe materials. The resistance to Slow Crack Growth of HDPE is correlated to the strain hardening modulus as, determined from a tensile test at 80 °C 2,3. Correlations between traditional methods (e.g. Full Notched Creep Test, Notched Pipe Test) and other accelerated tests (e.g. fatigue testing) show that the same failure mechanism is probed and that the strain hardening modulus can indeed be used to study and rank the expected SCG behavior of HDPE materials. With the huge benefits achieved for the HDPE pipe grades using raw materials, the logical next step is expansion of the benefits of the strain hardening method to other materials like PP. The strain hardening method is optimized (e.g testing temperature, testing speed) for r-PP pipe materials. For different r-PP materials strain hardening is determined,

Related keywords : Strain Hardening, random PolyPropylene, slow crack growth, pipe failure.
Please note that the whole article content is available on PPCA website onlySource : 2016 Berlin


Related papers

CHLORINE DIOXIDE RESISTANT HDPE MECHANISM, ANALYTICAL TOOLS AND SOLUTIONS

Author(s) : M. Boerakker, S. van Mierloo, D. v. Beek, R. Schipper, P. Voets, M. Soliman, K. Jacobson, D. Lukes, B. Rabaud, F. Zraick 2018 Las-Vegas

HDPE pipes are used for standard pressurized water pipes, offering an excellent solution for safe transport of (drinking) water. The HDPE pipe market is growing globally. Especially in countries that suffer from water scarcity, surface water and water from rivers have to be used for drinking water supply. To guarantee...

EFFECT OF BETA-NUCLEATION ON AGING AND CRACK GROWTH RESISTANCE OF POLYPROPYLENE EXPOSED TO CHLORINATED WATER

Author(s) : Joerg Fischer, Paul J. Freudenthaler, Patrick R. Bradler, Reinhold W. Lang, Susan C. Mantell 2018 Las-Vegas

This research addresses the effect of nucleation on the global aging behavior and the fatigue crack growth (FCG) resistance of commercial alpha- and beta-nucleated polypropylene random copolymer pipe grades (PP-R) when exposed to chlorinated water (5 mg/l free chlorine) at an elevated temperature of 60°C. Comparing...

FATIGUE CRACK GROWTH TESTING IN CHLORINATED WATER AT ELEVATED TEMPERATURES - TEST EQUIPMENT AND TEST PROCEDURE

Author(s) : Joerg Fischer, Patrick R. Bradler, Reinhold W. Lang 2018 Las-Vegas

In the present paper, a novel test system for conducting fatigue crack growth (FCG) experiments under superimposed mechanical-environmental conditions is presented. FCG experiments were performed on a polypropylene (PP) grade and a short-glass fiber reinforced polyamide 66 (PA-GF) grade as model materials. The...

A NOVEL PROCEDURE FOR CHARACTERIZING FATIGUE CRACK GROWTH IN CRB SPECIMENS VIA AN OPTICAL TECHNIQUE

Author(s) : Joerg Fischer, Paul J. Freudenthaler, Patrick R. Bradler, Reinhold W. Lang 2016 Berlin

Cyclic tests with cracked round bar (CRB) specimens have been used for some time to characterize the slow crack growth behavior of polyolefin pipe grade materials. In fact, most recently a standardized test procedure for cyclic CRB testing has been released in ISO 18489. To obtain kinetic data for cyclic crack growth...

FATIGUE CRACK GROWTH RESISTANCE OF POLYPROPYLENE IN CHLORINATED WATER AT DIFFERENT TEMPERATURES

Author(s) : Joerg Fischer, Patrick R. Bradler, Reinhold W. Lang, Gernot M. Wallner 2016 Berlin

The present paper aims to study the crack growth resistance of a black-pigmented polypropylene pipe grade when exposed to elevated temperatures and various environmental media (air, deionized water, ionized water with a specific chloride content, and chlorinated water) under the simultaneous application of cyclic...

QUALITY AND PERFORMANCE ASSESSMENT OF IN-PLANT AND POST-USE PE RECYCLATES FOR PIPE APPLICATIONS

Author(s) : Reinhold W. Lang, Patrick R. Bradler, Joerg Fischer, Dominik Poehlmann, Steven Schmidt, Ansgar Niehoff 2016 Berlin

In the present paper, a highly effective test and characterization concept for polymer recyclate materials is proposed and validated. Based on the proposed methods, a study was carried out to investigate the potential of in-plant and post-use PE recyclates from various applications to be utilized in PE recyclate...

A Risk Based Approach to Prioritizing Aldyl Piping Replacements in Gas Distribution Systems

Author(s) : Dr. Ken Oliphant, William Luff, Dr. Peter Angelo, Patrick Vibien 2014 Chicago

Managing aging pipeline infrastructure is an important part of overall pipeline risk management. The critical risk management questions for an aging infrastructure are: how quickly should replacement occur and what parts of the system should be prioritized for replacement. To answer these questions it is necessary to...

An Assessment of the Approach to Validate Polyethylene Pipe in Potable Water Systems

Author(s) : Dr. Ken Oliphant, Patrick Vibien, Dr. Michael Conrad, Sarah Chung 2014 Chicago

A new methodology has been developed to validate the performance of polyethylene piping materials in potable water applications. The methodology is based on several research programs which examined a standardized accelerated test methodology (ASTM F2263 Standard Test Method for Evaluating the Oxidative Resistance of...

PAS-55 / ISO 55000 As a New Asset Management Approach to Achieving Long-Term Reliability and Risk Reduction in Gas Distribution Pipelines

Author(s) : Dr. Ken Oliphant, Patrick Vibien 2014 Chicago

New and formal approaches to Asset Management (AM), such as the PAS-55 and ISO 55000 Asset Management standards have been developed over the past decade. These AM standards can be applied to pipelines and cover all stages of a pipeline's lifecycle - acquisition, operation, maintenance and renewal/disposal and provide...

Ultrasonic Phased Array Inspection of Polyethylene Pipelines & Fittings Used for Gas Distribution

Author(s) : GUEUGNAUT Dominique, ANGELINI Florent, BOUJLAL Adil, BOUAFFRE Romuald, SEVRE Bertrand, LOUET Patrick 2014 Chicago

Polyethylene (PE) is a widespread material for the manufacturing of gas and water distribution pipelines and a large number of PE electrofusion pipe joints can be found over the thousands of kilometres of PE pipeplines all over the world, thus generating an increasing interest in checking the quality of these joints....

Members of the Association

BOREALISBOROUGEINEOS O&PIRPCKorea Petrochemical IND. Co., LTDLyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
TOP