CYCLIC CRB TESTS -A QUICK AND RELIABLE TOOL FOR RANKING OF PE PIPE GRADES [PE]

# 2010 Vancouver

Different polyethylene pipe grades and lots were investigated with a fracture mechanics procedures under cyclic loads. The cyclic tests with Cracked Round Bars allowed a ranking of the different materials concerning crack resistance as a function of failure time as well as of crack initiation time within one week at room temperature. The ranking corresponded to the expectations based on the molecular and morphological properties of the materials. Moreover a lab internal reproduction series with tests on different machines and operators based on a first draft of a testing protocol proved the reproducibility of the results.

Please note that the whole article content is available on PPCA website onlySource : 2010 Vancouver


Related papers

AGING MECHANISM OF POLYETHYLENE PIPE MATERIAL IN CHLORINE DIOXIDE AND HYPOCHLORITE SOLUTION

Author(s) : Márton Bredács, Andreas Frank, Amaia Bastero, Alex Stolarz, Gerald Pinter 2018 Las-Vegas

Accelerated aging experiments by the immersion of a commercial polyethylene (PE) pipe grade in 10 ppm of chlorine dioxide (ClO2) and in 100 ppm of hypochlorite (HOCl) solution at 60 °C were performed. An additional immersion test was conducted in 1 ppm of ClO2 at 40 °C. The exposure parameters were continuously...

BIOMIMETIC DESIGN CONCEPTS FOR THE PIPE ARCHITECTURE OF TOMORROW

Author(s) : Gerald Pinter, Florian Arbeiter, Johannes Wiener, Andreas Frank, Otmar Kolednik 2018 Las-Vegas

In order to further increase the fracture toughness of pipes, biomimetic layer design of the pipe wall can be used. Therein, soft polymer interlayers can act as crack-arresters in a matrix of stiffer and inherently more brittle polymers. The effectiveness of the crack arresting role of soft interlayers in a...

DETERMINATION OF THE SLOW CRACK GROWTH RESISTANCE OF PA12 PIPE GRADES

Author(s) : Mario Messiha, Andreas Frank, Isabelle J. Berger, Jan Heimink, Hermann van Laak, Florian Arbeiter, Gerald Pinter 2018 Las-Vegas

Since the last decade polyamide 12 (PA12) has been successfully introduced as material for SDR 11 gas piping systems up to 18 bar, representing itself as an attractive alternative to steel pipes for high-pressure applications. Practical experience has confirmed that beside the higher strength, PA12 pipe grades also...

INVESTIGATION OF THE FAILURE BEHAVIOR OF POLYETHYLENE ELECTROFUSION SOCKETS

Author(s) : Isabelle J. Berger, Andreas Frank, Gerald Pinter, David Nitsche, Dirk Petry 2018 Las-Vegas

Electrofusion (EF) sockets constitute a well-established and practically proven technology for the joining of polyethylene (PE) pressure pipes. As for the pipes, the potential lifetime of such welding connections is beside other properties also depending on the resistance against slow crack growth (SCG). The current...

MULTILAYER POLYMER PIPES - POSSIBLE UTILIZATION OF RECYCLED MATERIAL

Author(s) : Pavel Hutar, Jan Poduska, Pavol Dlhy, Andreas Frank, Jaroslav Kucera, Jiri Sadilek, Gerald Pinter, Lubos Nahlik 2018 Las-Vegas

This paper investigates possible use of recycled material as a part of a multilayer polyethylene pressure pipe system. Crack propagation in different configurations is simulated. Lifetimes of pipes containing recycled material are calculated. Results are compared with lifetimes of pipes made of virgin...

SLOW CRACK GROWTH RESISTANCE OF NON-VIRGIN POLYMERS

Author(s) : Andreas Frank, Isabelle J. Berger, Mario Messiha, Carl-Gustaf Ek, Norbert Schuler, Jens-Martin Storheil, Erwin Mayrbäurl, Steve Heeley, Frank Krause, Lodewijk Niemöller, Philippe Gabriëls, Yogesh S. Deshmukh, Florian Arbeiter, Thomas Koch, Gerald Pinter 2018 Las-Vegas

In order to improve the circular economy of polymers in terms of sustainability and reduced carbon footprint, the increased use of recyclates has become a topic of major importance. Due to their long design lifetimes, pipe applications represent an excellent opportunity to create added value to non-virgin polymers. In...

FAST COMPARISON OF DIFFERENT POLYMERIC PIPE MATERIALS: EXTENDING THE USE OF THE CYCLIC CRB- TEST (ISO 18489)

Author(s) : G. Pinter, F. Arbeiter, A. Frank 2016 Berlin

The cyclic cracked round bar test has recently been added as a full-fledged ISO standard (ISO 18489) for comparison of polyethylene pipe grade materials’ slow crack growth resistance. However, possibilities of this test are yet far from being exhausted. Seeing, that polyethylene is only used in approximately 30% of...

IMPLEMENTATION OF A NEW CHLORINE DIOXIDE DEVICE FOR ACCELERATED AGING OF POLYOLEFIN PIPE MATERIALS

Author(s) : Márton Bredács, Anita Redhead, Andreas Frank, Amaia Bastero, Gerald Pinter 2016 Berlin

To maintain the high quality of potable water chlorine based disinfectants are frequently dosed into the drinking water network. Considering the oxidative nature of these species their long-term impact on the aging of polyolefin pipes is a matter of interest. In this study four polyolefin pipe grades were objected to...

LIFETIME PREDICTION OF PE100 AND PE100-RC PIPES BASED ON SLOW CRACK GROWTH RESISTANCE

Author(s) : Andreas Frank, Isabelle J. Berger, Florian Arbeiter, Pavel Hutař, Gerald Pinter 2016 Berlin

Due to the high slow crack growth resistance of modern polyethylene pipe grades a reliable lifetime assessment of pipes with focus on stage II failure has become challenging. The current paper presents a scientific approach for a fracture mechanics lifetime prediction based on Cyclic Cracked Round Bar (CRB) Tests....

POLYPROPYLENE MULTI-LAYER-PIPES - 100 YEAR LIFETIME ASSESSMENT USING LINEAR ELASTIC FRACTURE MECHANICS

Author(s) : Univ.-Prof. DI Dr. mont. Gerald PINTER, DI Florian ARBEITER 2016 Berlin

Applying scientifically well established and investigated linear fracture mechanic methods (LEFM) the kinetics of the slow crack growth (SCG) on polypropylene layers and coextruded interfaces on multi-layer-pipes could be investigated. Taking effects of ageing and stress relaxation during the service lifetime into...

Members of the Association

BOREALISBOROUGEINEOS O&PIRPCKorea Petrochemical IND. Co., LTDLyondellBasellPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE
TOP