

PE Gas Distribution Pipes Some Key Quality Issues

David Walton, PE100+ Association

Contents

- Background and scope of the PE100+ Association
- Key success factors for pipes made from PE
- PE Pipe model and material quality considerations
- New Developments
- Concluding remarks

PE100+ Association

- Founded on 24th February, 1999 by Borealis, Elenac and Solvay
- Consisting of eight member companies currently Borealis, Borouge, Ineos, LyondellBasell, Prime Polymer, SABIC, SCG Plastics and Total Petrochemicals
- Supported by Advisory Committee and working closely with other associations

Founding Scope of PE100+ Association

- Establish a quality label for PE100+ products
- Assure consistent quality at the highest level in the production and application of PE100 pipe materials
- Promote usage of PE piping systems in general
- Focus towards end-users with more information support
- Welcome any polyethylene manufacturer whose materials comply with the enhanced requirements of the PE100+ Association

What does the '+' in PE100+ represent?

- Certified PE100 material consistency of 3 critical properties due to regular testing cycle
- Promotion of quality beyond the raw material to the entire chain of pipes & fittings, installation and maintenance
- Peace of mind due to use ready made compounds without the influence of MB compatibility/consistency, poor homogenisation during extrusion and incomplete testing/certification

Technical Requirements

Property	Test Method	EN/ISO Standard Requirement	PE 100+ Requirement
Creep Rupture Strength	Internal pressure test at 20°C and 12.4 MPa ISO 1167	> 100 h	> 200 h
Stress Crack Resistance (SCG)	Pipe notch test at 80°C and 9.2 bar ISO 13479	> 500 h	> 500 h
Resistance to Rapid Crack Propagation (RCP)	S4 test at 0°C ISO 13477	Pc> MOP/2,4 – 13/18 Pc: critical pressure MOP: max. operat. pressure	> 10 bar

All tests are performed on 110 mm SDR 11 pipes

Test Rounds

Every 7 months

Administrator GASTEC

PE 100

Manufacturer

Each 5 pipes

Bodycote, IIP Notch Test TGM Internal Pressure Test

Administrator KIWA/GASTEC

Quality Materials List PE100+ Association Becetel S4 Test

Results

15 pipes

PE100+ Quality Materials

Valid until October, 2009

Product	Product Manufacturer	
Borstar® HE3490-LS (black)	Borealis AB	
Borstar® HE3492-LS(orange)	Borealis AB	
Borstar® HE3494-LS (blue)	Borealis AB	
Borstar® HE3490-LS (black)	Borouge Pte., Ltd.	
ELTEX® TUB 121 (black)	Ineos Polyolefins	
ELTEX® TUB 125 N2025 (orange)	Ineos Polyolefins	
ELTEX® TUB 124 N2025 (blue)	Ineos Polyolefins	
ELTEX® TUB 121 N3000 (black)	Ineos Polyolefins	
Hostalen CRP 100 black	LyondellBasell	
Hostalen CRP 100 blue	LyondellBasell	
HI-ZEX® 7700 MBK (black)	Prime Polymer Co., Ltd.	
EVL-H®SP5505BK (black)	Prime Polymer Co., Ltd.	
SABIC VESTOLEN® A 6060 R (black)	SABIC Polyolefine GmbH	
SABIC VESTOLEN® A 6060 R (blue)	SABIC Polyolefine GmbH	
EL-LENE H1000PC (black)	SCG Chemicals & Thai Polyethylene, Ltd	
HDPE XS10H (blue)	Total Petrochemicals	
HDPE XS10B (black)	Total Petrochemicals	
HDPE XS10 Orange YCF	Total Petrochemicals	

In addition to the Quality Materials List...

Focal Points:

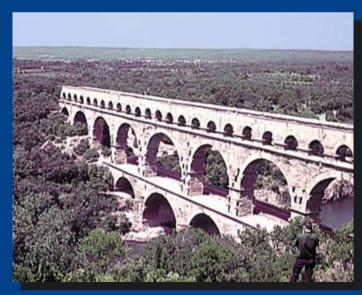
- 1. Technical topics: To respond to industry technical issues (eg Butt Welding Project)
- 2. East Europe: To set industry standards together
- 3. Build strong quality image outside Europe: Turkey, India, China, N. America (through PPCA)
- 4. Continue promotion with industry co-operation: To Create Trust in high quality PE

In 2009 seminars are planned in Turkey, Romania, China & Dubai

s6 ppxiii in 2006 usa w.dc

south america. brazil, chile, agentina china australia india iran south-east asia south africa global water..in moraco stwangje, 16/02/2004

Contents


- Background and scope of the PE100+ Association
- Key success factors for pipes made from PE
- PE Pipe model and material quality considerations
- New Developments
- Concluding remarks

Creating value in Pipe – basic human needs

- Water supply
- Energy supply (gas, oil, hot water)
- Sewage disposal
- Telecom

Roman times...

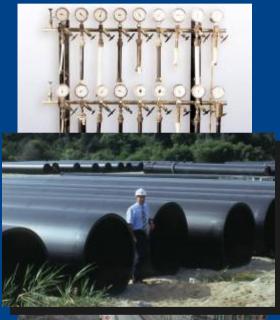
...and today

In Europe, PE & PP pipes have an impressive track record

1950's - first PE pressure pipe installed

1970's - second generation PE for water and gas

- crosslinked PE (PEX) for hot water


1980's - PP pipe systems for new applications

1990's - bimodal PE100 introduced

- higher pressures and larger pipes

- PO pipe markets grow at 6 %

2000 - high momentum into the new millennium

Key success factor for PE pipes: Flexibility

- Long lengths in coils
- Curving trenches
- Modern installation techniques
 - Relining
 - Horizontal drilling
 - Plowing in

Key success factor for PE pipes:Weldability

- Cost effective butt welding
- Safe and practical electro fusion
- Leak tight pipeline
 - Earthquakes
 - Ground movements
 - Tree roots

Key success factor for PE pipes: Positive image

- Innovation / new generations
- High level of standards
- Safe for gas transportation
- Environmentally friendly
- 100 years reference design life

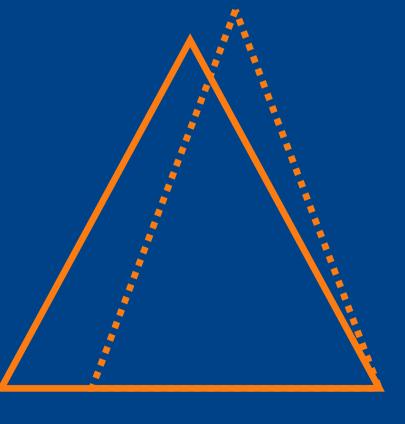
Contents

- Background and scope of the PE100+ Association
- Key success factors for pipes made from PE
- PE Pipe model and material quality considerations
- New Developments
- Concluding remarks

EUROPEAN, FORUM GAS 2009

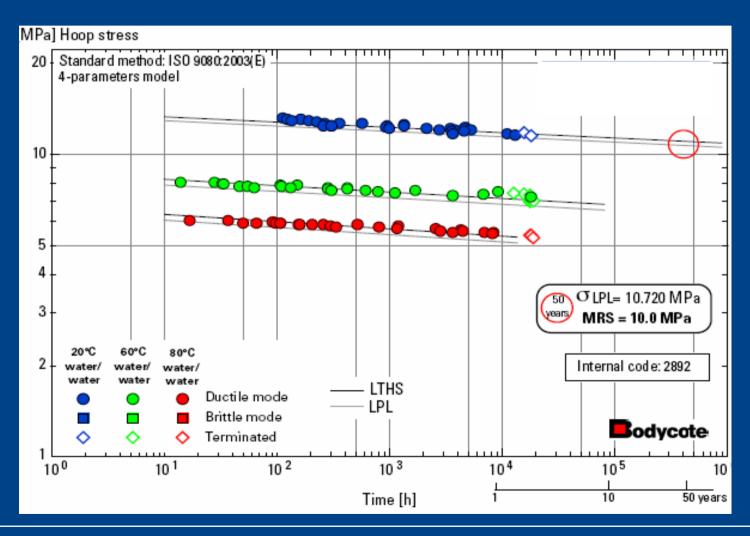
Pipe Material Performance Matches Today's Demands

- Product consistency has increased allowing lower safety factors to be safely implemented
- "Ready made" compounds are tested by the raw material supplier over a long period of time to demonstrate compliance with the MRS value
- This level of quality and consistency cannot be achieved by blending natural polymer and additive masterbatch on the extruder

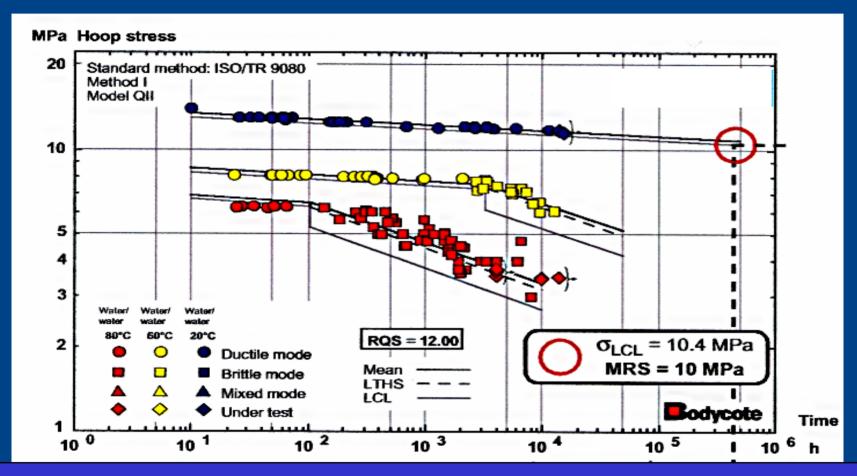


Balance of mechanical properties

Long Term Hydrostatic Strength (MRS)

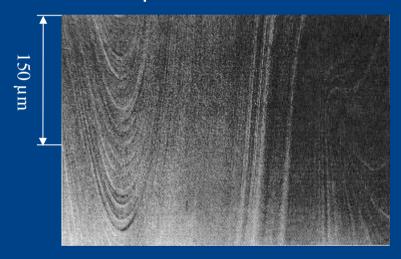


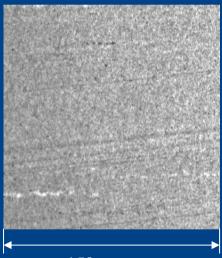
Rapid Crack
Propagation (RCP)


Long term hydrostatic strength

Long term hydrostatic strength

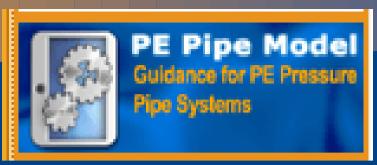
Now excluded from the ISO specifications ISO4437 & ISO4427




Dispersion of additives

The demand on proper homogenisation can only be met by high quality "ready made" raw material compounds.

The requirements are described in ISO 18553.


Unacceptable homogenisation by a single screw pipe extruder (natural resin & master batch) Image taken from ISO 18553

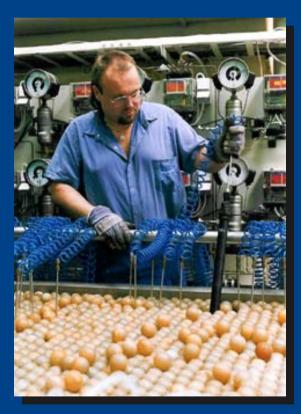
150 µm

Perfect homogenisation of 2,25% carbon black by professional compounding equipment

PE pipe model

- Purpose to educate and inform decision makers about PE
- Updated by Jason Consults and Webmaster with expert inputs
- view it on www.pe100plus.net (soon in Chinese!)
- Introduction
- Disclaimer

ISO Standards



Test on real pipe systems to confirm quality

Full scale...

...and internal pressure test

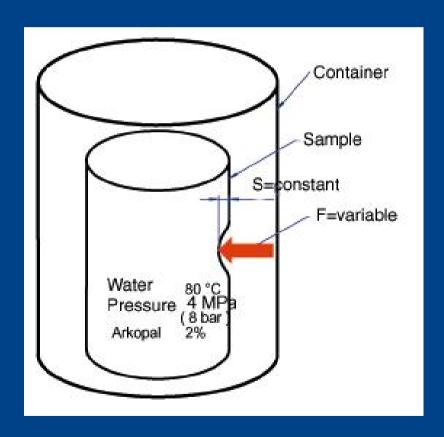
Contents

- Background and scope of the PE100+ Association
- Key success factors for pipes made from PE
- PE Pipe model and material quality considerations
- New Developments
- Concluding remarks

New Developments based on PE100

- Changing the parameters in the bimodal process enables materials to be "tailor – made" for specific applications.
- Recent developments include
 - PE100 materials for injection moulding
 - High stress crack PE100 materials
 - Others to follow.....

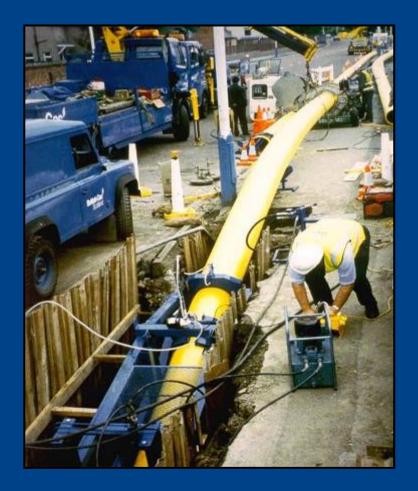
High Stress Crack Resistant Materials


- Why do we need these materials?
 - Installation conditions are getting tougher
 - Pipes can get damaged during installation
 - Pipes can experience damage during operation from stones in the backfill material
- How can we evaluate these materials?
 - Need to meet all PE100 requirements
 - Plus increased stress crack resistance for which new tests are required

High Stress Crack Resistant Materials

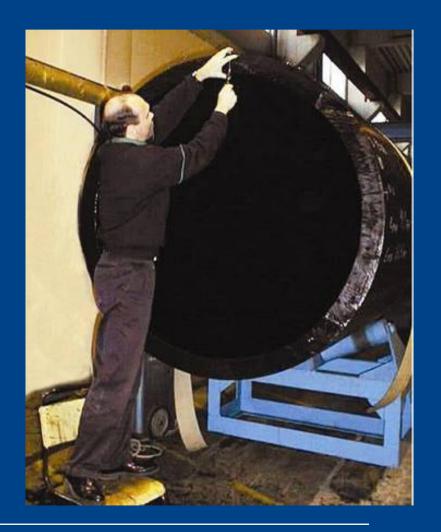
- New Point Load Test
 - DVGW have adopted a new test - Point Load Test for directional drilling & pipe bursting
 - Simulates stone loading
 - Crack growth accelerated by use of a stress cracking agent and high temperature
 - Sample must pass 8760 hours without failure
- Shorter term FNCT Test Used for Quality Testing

Contents


- Background and scope of the PE100+ Association
- Key success factors for pipes made from PE
- PE Pipe model and material quality considerations
- New Developments
- Concluding remarks

The High Demands on PE Pipe Materials

- The full cost benefits from PE pipes comes for installation savings due to the flexibility and fusion capabilities of PE.
- High on the benefit list is the ability to use a range of No-Dig methods to renovate old gas and water mains.
- These techniques impart external damage to the pipe which must not develop into cracks.



The High Demands on PE Pipe

- PE pipes are also getting larger in diameter and thicker walled demanding higher toughness from the PE raw materials
- Today, PE pipes are also used at higher pressures and with a lower design factor demanding greater consistency of performance.

The Need for High Quality

- PE pipes are replacing products that have performed well and must achieve similar targets
- These demands can only be met by high quality "ready made" raw material compounds
- International specifications have been updated to bring in additional safeguards.
- The PE100+ Association has set the additional requirement of consistency by regular testing

Thank you for your attention